

Hypex Electronics BV Kattegat 8 9723 JP Groningen, The Netherlands +31 50 526 4993 sales@hypex.nl www.hypex.nl

UcD102

Dual Channel High Efficiency Power Amplifier Module

Description

The UcD102 amplifier module is a dual channel self-contained high-performance class D amplifier intended for a wide range of audio applications, ranging from Public Address systems to ultrahigh-fidelity replay systems for studio and home use. Chief distinguishing features are flat frequency response irrespective of load impedance, nearly frequency-independent distortion behaviour and very low radiated and conducted EMI. Control is based on a phase-shift controlled self-oscillating loop taking feedback only at the speaker output.

Contents

Con	tents	2
1	Performance data	2
2	Audio Input Characteristics	2
3	Absolute maximum ratings	3
4	Recommended Operating Conditions	3
5	Connections	4
6	Typical Performance Graphs	7
7	Mechanical Dimensions	9
8	Bridge-tied load (BTL)	10

1 Performance data

Power supply = +/-35V, Load=4 Ω , MBW=40kHz, Source imp=40 Ω ,unless otherwise noted

ltem	Symbol	Min	Тур	Max	Unit	Notes
Max Output Power	Pr 2Ω	-	60	-	Wrms	THD=1%
	$P_R 4\Omega$	-	100	-	Wrms	
	Pr 8Ω	-	60	-	W _{rms}	
Distortion	THD+N	-	0.03	0.05	%	20Hz <f<20khz.< td=""></f<20khz.<>
						Pout <pr 2<="" td=""></pr>
		-	-	0.03	%	20Hz <f<20khz pout="1W</td"></f<20khz>
Output noise	Un	-	17	25	μV	Unwtd, 20Hz-20kHz
Output Impedance	Zout	-	-	22	mΩ	f<1kHz
		-	-	90	mΩ	f<20kHz
Power Bandwidth	PBW		20-35k		Hz	
Frequency Response		DC	-	48k	Hz	+0/-3dB. All loads.
Voltage Gain total	Av	13.3	13.5	13.7	dB	
Supply Ripple Rejection	PSRR	60	65	-	dB	Either rail, f<1kHz.
Required input level for			4.25		V	Appropriate supply
100W/4Ω						voltage assumed
Efficiency	η		92		%	Full power
Idle Losses	Po	-	4	4.5	W	External VDR
		-	6	7		Internal VDR
Standby Current	I STBY	-	5	7	mA	Positive rail
		-	9	12		Negative rail
Current Limit		6	8		А	

2 Audio Input Characteristics

ltem	Symbol	Min	Тур	Max	Unit	Notes
Input Impedance	Zin		1.8k		Ω	Either input to ground
CM Rejection Ratio	CMRR		55		dB	All frequencies

3 Absolute maximum ratings

Correct operation at these limits is not guaranteed. Operation beyond these limits may result in irreversible damage.

ltem	Symbol	Rating	Unit	Notes
Power supply voltage	VB	+/-48	V	Shuts down when either rail exceeds 50V
Peak output current	OUT,P	8	А	Unit current-limits at 8A
Input voltage	Vin	+/-12	V	Either input referred to ground
Air Temperature	Тамв	55	°C	
Heat-sink temperature	Tsink	90	°C	User to select heat sink to insure this
				condition under most adverse use case

4 Recommended Operating Conditions

ltem	Symbol	Min	Тур	Max	Unit	Notes
Power supply	Vв	20 ¹⁾	36	42 ²⁾	V	
voltage						
Load impedance	ZLOAD	1			Ω	
Source impedance	Zsrc			100	Ω	
Effective power	CSUP	4700μ ³⁾			F	Per rail, per attached
supply storage						amplifier. 4Ω load
capacitance						presumed.

Note 1: Reduced performance.

Note 2: Unit shuts down when either rail exceeds 50V.

Note 3: The effective power supply storage capacitance of Hypex SMPS is already in excess of 4700μ F. Do not add supplementary capacitance.

5 Connections

In order to ease connecting the amplifier, all necessary connections to operate the amplifier are grouped in one standard 2.54mm pitch dual row 18 pin header.

Pin	Туре	Function
1,2	Output	CH1 Loudspeaker connection (hot)
3,4	Output	CH1 Loudspeaker connection (cold) ¹⁾
5	Input	CH1 Audio input ground connection ¹⁾
6	Input	CH1 Inverting audio input
7	Input	CH1 Non-inverting audio input
15,16,22	Input	Power supply ground connection ¹⁾
17,18	Input	Positive power supply connection
19,20	Input	Negative power supply connection
21	Input	Driver voltage, connect to GND or to external driver voltage ²⁾
27	Input	ON/OFF control (Active low)
28	Output	DC-fault detection (Open collector - Active low)
30	Input	CH2 Non-inverting audio input
31	Input	CH2 Inverting audio input
32	Input	CH2 Audio input ground connection ¹⁾
33,34	Output	CH2 Loudspeaker connection (cold) ¹⁾
35,36	Output	CH2 Loudspeaker connection (hot)

Note 1: Pin 3, 4, 5, 15, 16, 22, 32, 33 and 34 are physically connected to the same potential (ground).

Note 2: Dissipation in the UcD102 can be lowered by using external driver voltage other than GND, see section 5.5 for additional info.

Figure 1. Connector pinning UcD102

5.1 DC-Error Detection Characteristics

The UcD102 has an integrated DC-error detection which will pull pin 28 low in case of such an event. It is recommended to sense this fault condition and to interrupt both power supply lines in such an event.

ltem	Туре	Min	Тур	Max	Unit	Notes
Voltage on pin 28, DC-	Output			1	V	Internal open collector ¹⁾
error						

Note 1: Must be pulled to a positive voltage by means of an external resistor. Open collector maximum output current: 100mA. Maximum collector voltage: 65V.

Figure 2. DC-Error Output interface.

5.2 Amplifier On/OFF Characteristics

Pulling pin 27 low enables the amplifier. Leaving pin 27 floating will put the amplifier in standby. This pin may be driven from a logical output or an open collector.

ltem	Min	Тур	Max	Unit	Notes
Voltage on pin 27, left floating			3	V	Internally pulled up
Pull-up current	20		40	uA	
Threshold voltage	1.8	2.2	2.7	V	
Permissible voltage range	-5	-	75	V	

Figure 3. Amplifier On/Off Control interface.

5.3 Input buffer recommendation

The UcD102 has no on-board input buffer. Applications that require a higher gain and/or a higher input impedance benefit from a buffer stage like shown below.

5.4 Amplifier start-up delay

During initial power up the amplifier is disabled for approx. 1.5s regardless of the state of pin 27. Once powered up there is no start or stop delay.

5.5 External Driver Voltage Connection

An internal linear VDR regulator is available. In order to minimize dissipation in multi-channel applications an external voltage source can be connected. The VDR reference must be connected to the negative supply rails(!). Driver current is independent of driver voltage, regulator losses increase linear with applied voltage. If no external VDR is available the input should be connected to GND in order for the UcD102 to operate.

ltem	Min	Тур	Max	Unit	Notes
External driver voltage	13	-	GND	V	1)
Driver current amp muted	-	8		mA	
Driver current	-	85		mA	

Note 1: This voltage is in respect to the negative supply rails, if no external driver voltage is available, connect to GND

6 Typical Performance Graphs

The graphs were taken on one stock UcD102 module powered by an SMPS400A100. Refer to the tables in section 1 for guaranteed limits.

6.1 THD+N over power and frequency

THD+N vs. power at 100Hz (blue), 1kHz (green) and 6kHz (red) (2 Ω).

THD+N vs. power at 100Hz (blue), 1kHz (green) and 6kHz (red) (4 Ω).

THD+N vs. power at 100Hz (blue), 1kHz (green) and 6kHz (red) (8Ω).

THD+N vs. Frequency at 1W in 2 Ω (blue), 4 Ω (green) and 8 Ω (red).

THD+N vs. Frequency at $P_{\text{R}}/2$ in 2 Ω (blue), 4 Ω (green) and 8 Ω (red).

6.2 Frequency Response (4 Ω , 8 Ω and open circuit)

6.3 Output Impedance

6.4 18,5+19,5kHz IMD (10W, 8Ω)

7 Mechanical Dimensions

8 Bridge-tied load (BTL)

This two channel amplifier can be utilized in Bridge Tied Load configuration. This is especially useful for high impedance loads. In a bridge-tied load configuration, channel 1 is driving one side of a load and channel 2 is driving the other side of the load. The signal input of channel 2 is the inverted signal input of channel 1. Note that this does not affect the phase of the signal. A BTL configuration results in double the voltage swing across the load compared to a single-ended configuration where one side of the load is tied to an amplifier and the other side to ground.

In the graphical representation above, the BTL principle is depicted. By inverting the signal input of the second channel, the output voltage amplitude is doubled. Please note that the negative (GND) output terminals are tied together. On the UcD102 module, this is already implemented in the design and therefor these pins can be left unconnected.

In a bridge-tied load configuration, the load impedance which each amplifier channel 'sees' is half the characteristic impedance of the connected speaker. Therefor the minimum load in BTL configuration is 4Ω , however, we recommend to use only a BTL configuration with a load of 8Ω or higher.

Parameter	Remarks	Symbol	Min	Тур	Max	Unit
Max Output Power	1KHz, THD=1%,	P _{R, 4Ω}	-	-	100	Wrms
	Bridge-tied load (BTL)	P _{R, 8Ω}	-	-	200	Wrms
Voltage Gain	Bridge-tied load (BTL)	Av	19	19.5	20	dB
Loudspeaker impedance	Bridge-tied load (BTL)	Zl,se	4	8	-	Ω
range						

8.1 Typical Performance Graphs BTL

THD+N vs. power at 100Hz (blue), 1kHz (green) and 6kHz (red) (BTL - 4Ω).

THD+N vs. power at 100Hz (blue), 1kHz (green) and 6kHz (red) (BTL - 8Ω).

DISCLAIMER: This subassembly is designed for use in music reproduction equipment only. No representations are made as to fitness for other uses. Except where noted otherwise any specifications given pertain to this subassembly only. Responsibility for verifying the performance, safety, reliability and compliance with legal standards of end products using this subassembly falls to the manufacturer of said end product.

LIFE SUPPORT POLICY: Use of Hypex products in life support equipment or equipment whose failure can reasonably be expected to result in injury or death is not permitted except by explicit written consent from Hypex Electronics BV.

Document	PCB	Description	Date
Revision	Version		
R1	UcD102 V0.0	Initial Draft.	30.05.2012
R2	UcD102 V0.3	Performance Graphs added	04.02.2013
R3	UcD102 V1.0	Performance Graphs added for 2 Ω , 8 Ω and BTL	01.05.2020
		Added VDR info	